From Theory to Practice: Wave based methods applied in Olive Tree Lab – Terrain

a presentation at

«PROVIAMO A PENSARE DIVERSAMENTE AL CONTROLLO DEL RUMORE AMBIENTALE» Padova 3 Luglio 2014

TERRAIN

By: Panos Economou, P.E. Mediterranean Acoustics Research & Development CYPRUS

mediterranean acoustics research & development

EROM THEORY TO PRACTICE AN EXAMPLE: Piazza dei Signori- Padova SIMULATING SOUND MEASUREMENTS

Slide 2 of 43

MODELING

- The model was created ENTIRELY based on Google Earth image
- No distances were measured on site

mediterranean acoustics research & development

NOISE SOURCE

Mr Amadasi clapping wooden boards as noise source. Microphone on ground at 10m

SOUND PATHS IN MODEL

1	Paths P									
7		ID 👻	Name	Distance m	R	D	Time ms	EA	Real	Imaginar ^
		193	Path	193.346	2	1	563.3	-51.92	0.000	-6.521
DXF		192	Path	130.296	0	1	379.6	-51.88	-1.747	0.000
		191	Path 4	37.158	1	1	108.2	-51.87	-0.000	0.000
0		190	Path	149.137	2	1	434.5	-51.83	-0.000	0.000
-1		189	Path 7	37.479	1	1	109.2	-51.82	-0.000	0.000
		188	Path	85.070	0	2	247.8	-51.54	-0.000	-0.000
		187	Path 11	37.629	1	1	109.6	-51.5	6.168	-0.000
		186	Path 6	37.347	1	1	108.8	-51.46	0.000	-6.537
U		185	Path 3	37.146	0	1	108.2	-51.27	-0.000	0.000
		184	Path	105.045	1	2	306.0	-50.88	-0.000	6.624
	The second se	183	Path	126.906	1	1	369.7	-50.81	0.000	1.431
\square		182	Path 5	37.338	0	1	108.7	-50.69	0.000	-0.000
ă		181	Path	//.905	2	1	226.9	-50.61	0.000	0.000
		180	Path	87.645	1	2	200.3	-50.58	-0.000	-4.925
		179	Path	142.570	2	1	332.3	-50.35	0.000	3.042
Ø		177	Path	142.370	2	2	720.1	-30.21	4 999	0.000
		176	Path	127 527	1	2	371.5	-50.15	0.000	-3.745
		175	Path	88 649	0	1	258.2	-50.03	0.000	-0.000
		174	Path	69 233	1	1	201.7	-49.86	-0.000	-0.000
		173	Path	77.896	1	1	226.9	-49.8	0.000	0.000
		172	Path	88 666	1	1	258.3	-49 64	0.000	9 527
			Path	142.075	1	1	413.9	-49.51	-0.000	-0.000
		170	Path	116.448	2	1	339.2	-49.42	9.656	-0.000
		100	Path	60 497	0	1	176.2	40.20	0.000	0.000 ~
Excess	Level (dBA): 💛 Ready Editing Plane: Origin 0, 0, 0 Normal 0, 0, 1 L = 1 Perspective: ON Select By Pick 5.881, -53.783, 0.000	▶ C ©	ξC 🎉	P] 品 O	💐 S	B •	R 🎆v	1 🌩 D	 C	🖁 G 🛃 R

- The calculations took into account the top 5,000 contributing sound paths between source and receiver
- On the right panel, details for each path such as, time distance of arrival, contribution in dB, orders of reflection and diffraction and other information

IMPULSE RESPONSE - MODEL

IMPULSE RESPONSE - MEASUREMENTS

mediterranean acoustics research & development

Slide 7 of 43

REVERBERATION TIME – MEASUREMENTS vs OTL - TERRAIN

• Notice how close are the results at and above 1 kHz.

IR - MEASUREMENTS vs OTL TERRAIN (dB)

- The RED curve represents measurements
- The BLUE OTL-Terrain simulation

• PLEASE NOTE THE BACKGROUND NOISE LEVEL DUE TO TRAFFIC IN RED CURVE (BEGINNING AND END OF CURVE)

IR – MEASUREMENTS vs OTL – TERRAIN (Pa)

- The RED curve represents measurements
- The BLUE OTL-Terrain simulation
- 1st we hear anechoic voice at 1m
- 2nd again anechoic at 10m
- 3rd voice simulated by OTL-Terrain in the piazza at 10m
- 4th the voice from the IR of measurements at 10m (including traffic noise)

Slide 12 of 43

Slide 13 of 43

Slide 14 of 43

Slide 16 of 43

Thank you for your attention.

I would welcome questions or comments.

mediterranean acoustics research & development