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é\ PART 1: INTRODUCTION — FROM OPEN SPACES TO ROOMS 7

IMPEDANCE VS ABSORPTION COEFFICIENT

REVIEWS OF MODERN PHYSICS, VOLUME 16, NUMBER 2 APRIL, 1944,
Sound Waves in Rooms, PHILIP M. MORSE AND RICHARD H. BOLT

Morse and Bolt in their 1944 paper say on page 87: “It has been demonstrated in a number of ways that the
absorption coefficient entering into the geometrical acoustical formulas is not a fundamental property of the wall
surface.... It is an average property, averaged for the particular distribution of sound which we have called
"ergodic" in the previous section, and has no meaning in cases where the sound distribution is not ergodic. It is
well to emphasize this limitation on the use of the term absorption coefficient, for an over-optimistic use of the
term may lead to erroneous results.... It is true that the impedance is not a much more "fundamental” physical
property than the absorption coefficient; its advantage lies in the fact that its measurement can be specified
concisely and uniquely and that its value for a given material has a definite meaning no matter what the
distribution of sound inside a room.”



@ PART 1: INTRODUCTION — FROM OPEN SPACES TO ROOMS

SPHERICAL & GROUND WAVES

“..Practically, one never has plane waves. They are a mathematical fiction which can be

only approximated physically.”
Isadore Rudnick, 1947, JASA VOLUME 19, NUMBER 2, “The Propagation of an Acoustic

Wave along a Boundary”
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21> 22° 23

“A ground wave occurs when the incident sound field spreads spherically, as from a small
source near the ground, and so reaches different parts of a plane surface with different angles
of incidence. Changing angles of incidence produce a reflection coefficient that varies with
position along the surface....The result is that there cannot be an image | in the ground that is
spatially a replica of the true source S, and not even one of reduced strength. Theoretical
analysis shows that there is a “fuzzy’” image distributed over an extensive region. It is
strongest at the expected location but extends to infinity both horizontally and downward.”

Tony F. W. Embleton: Sound propagation outdoors .
J. Acoust. Soc. Am., Vol. 100, No. 1, July 1996 S
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142 PHILIF M, MORSE ANID RICH.ARD H. BOLT
“Therefore any argument which assumes that the

reverberant sound can be represented by a
multiplicity of simple images is likely to lead to
fallacious results. The analyses of Sabine, Norris,
Eyring, Millington, and Sette are subject to this
criticism”,
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REVIEWS OF MODERN PHYSICS, VOLUME 16, NUMBER 2 APRIL, 1944, Sound
Waves in Rooms, PHILIP M. MORSE AND RICHARD H. BOLT

IS

’
Frg. 31. Angles and distances invelved mmiuting the reflection of a spherical wave from

an absorbing wall,
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Theodore J. Schultz in his paper “Persisting questions in steady-state measurements of noise
power and sound absorption” starts with, “....in view of the great number of recent studies on
this subject, the reverberation room seems to be turning into a "research object" rather than a
"useful tool." ....it is almost incredible to me that we could produce such a complex and
mysterious thing, just by putting up four walls, a floor and a ceiling, and then radiating sound
into it. And yet the more we study sound in an enclosed space, the more peculiar it seems. If
our earlier theories made the behavior of sound in rooms appear simple, our recent studies are

certainly correcting that naive view.”

“Persisting questions in steady-state measurements of noise power and sound
absorption” Theodore J. Schultz, JASA Volume 54 Number 4 1973
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A REFLECTION OVER A SURFACE —
IS THERE MORE THAN ONE ANSWER TO THE PROBLEM?
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1: Spherical wave, Impedance, pressure summation

The figure on the left shows the configuration while the figure on the right
Excess Attenuation in dB (the ratio of total over direct sound field).

—— Spherical, Impedance, Pressure Summation — Flane, Imgedance, Fressure Summation
—— Plane, Abs. Coeff. Pressure Summation —— PFlane, Abg. Coeff. Energy Summation
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ROOM RESONANCES USING WAVE BASED GEOMETRICAL ACOUSTICS (WBGA), ECONOMOU ET AL, ICSV23, JULY 2016
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2: Plane wave, Impedance, pressure summation

= Spherical, Impedance, Fressure Summation = Flane, Impedance, Fressure Summation
0 — Plane, Abs. Coeff. Pressure Summation — Plane, Abs. Coeff. Energy Summation
5 [ . —————
[} \ x i s
= ! —~
2 : \ / \ / \
= -5 [
3 : ty ~
40 X o
-15 t + — + f————————+
1 3
10 102 1{] |--! GLNETHEEAI_AE

Frequency (Hz) E‘fj SUITE

ROOM RESONANCES USING WAVE BASED GEOMETRICAL ACOUSTICS (WBGA), ECONOMOU ET AL, ICSV23, JULY 2016
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3: Plane wave, absorption coefficient, pressure summation,.

—— Spherical, Impedance, Pressure Summation —— Flane, Impedance, Fressure Summation
—— Plane, Abs. Coeff. Pressure Summation — Flane, Abs. Coeff. Energy Summation
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4: Plane wave, absorption coefficient, energy summation.

= Spherical, Impedance, Fressure Summation = Flane, [mpedance, Fressure Summation
0 —— Plane, Abs. Coeff. Pressure Summation —— Flane, Abs. Coeff. Energy Summation
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FIG. 6. Relative sound pressure levels measured 5 m from a point source at
Tony F. W. Embleton: Sound propagation outdoors  the surface of an acoustically soft ground (grass). Results are for four dif-

J. Acoust. Soc. Am., Vol. 100, No. 1, July 1996 ferent recerver heights, 7,=0.02, 0.3, 0.6, and 1.2 m. respectively (Ref. 13,
Fig_ 5).
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SOUND DIFFRACTION
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THE SEAT DIP EFFECT USING WAVE BASED GEOMETRICAL ACOUSTICS
(WBGA), ECONOMOU ET AL, ICSV23, JULY 2016
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THE
P. E. MEDITERRANEAN ACOUSTICS RESEARCH & DEVELOPMENT
(PEMARD) APPROACH




A

PART 2: PEMARD APPROACH

What is Wave Based Geometrical Acoustics (WBGA)?

It is the method by which the calculation of acoustical fields take into account

the principle of superposition of waves using both amplitude and phase,
producing interference phenomena.

1)

/ WAVE BASED GEOMETRICAL ACOUSTICS
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S

SOUND REFRACTION IN THE ATMOSPHERE




PART 2: PEMARD APPROACH

- T v | v T v T T e = v T Al T a g = - T o

0 o'l'l'l'l'l'l'l'l'l
-10 - OTL-Suite o -10 —— OTL-Suite -

20k 100 Hz i 100 Hz

Transmission Loss (dB)
&

-
b
o
b
=
3
-

1 1 1 1 1 1 1 1

Asilasmaians o LT Il S P\ ¥ N A A " : N A A
20k 3.0k 40k 50k 6.0k 7.0k 8.0k 9.0k 10.0k 8%.0 1.0k 20k 30k 40k 50k 60k 70k 80k 9.0k 10.0k
Range (m)

Figure 2: Comparison between OTL-Suite calculations (red line) and 1995 Benchmark Cases (black line). Left

graph is for the case of a strong positive linear sound speed gradient of 0.1 s while the right graph is for the case
of a strong negative sound speed gradient of -0.1 st. Both curves show transmission loss vs distance at 100Hz.

Calculated graphs are superimposed on published data.
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WIND TURBINE NOISE PREDICTION USING OLIVE TREE LAB TERRAIN, WTN, INCE-EUROPE , BIGOT, ECONOMOU, MAY 2017

IOA-LONDON BRANCH APRIL 19TH 2017, WSP | PARSONS BRINCKERHOFF,




A

PART 2: PEMARD APPROACH

WTN Case 2 WTN Case 2
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Figure 7: Left graph: Measured and predicted noise levels for WTN Case 2. Right graph: Measured and predicted

Noise Levels for Case 2 in dB(A) for a set of 10-minute meteorological data. Downwind conditions with a range of
500m.
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Bent sound rays and multiple ground reflections due to downwind conditions, On the
left, few rays for clarity and on the right 1000 sound paths.

WIND TURBINE NOISE PREDICTION USING OLIVE TREE LAB TERRAIN, WTN, INCE-EUROPE , BIGOT, ECONOMOU, MAY 2017
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dB(A) mapping in 2D
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50Hz 2D g9y 4 500 Hz 2D #7=rme

w

§;

Temp.: 20 C on ground, 15 C at 10 m., Wind Speed: 12 m/s 10m, Roughness constant: 0.71 a typical value.

50Hz3D  #9xe 500 Hz 3D @ozres
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1ISO 9613 vs PEMARD APPROACH
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Figure 1: Geometry of set up in Terrain, Hs=0.3m, Hr=1.2m, Hb=3m, Dsr=35m, HG=GFR=20 MNs/m?,
PG=GFR=300 kNs/m*
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Figure 2: Validation of Isei’s geometry from Errort Reference source not found. - Calcylations are superimposed on graph

courtesy of Attenborough et. al. (a) Insertion loss of barrier with Hard and Porous Ground effects. In colored dashed
lines PEMARD results which are almost indistinguishable from the original graphs, in solid lines and markers the
ISO results. (b) Excess Attenuation with barrier in place, colored dashed lines represent PEMARD results.

ACCURACY OF WAVE BASED CALCULATION METHODS COMPARED TO ISO 9613-2, NOISE-CON, ECONOMOWU ET AL, SEPT 2014
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Isei’s geometry, barrier height 3m, thin & wide, Hard vs Porous Ground
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Figure 1: SPL spectra, Lpa and L values based on Isei’s geometry, HG=GFR=20 MNs/m* PG (SG)=GFR=300
kNs/m* (a) Hs=0.3m, Hr=1.2m, Hb=3.0m, Dsr=35m, (b) Hs=0.3m, Hr=1.2m, Hb=1.5m, 1m thick barrier, Dsr=35m.
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Porous Ground Propagation Porous Ground Propagation
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Figure 1: Sound propagation over porous ground in relative levels (10 dB/division), (a) in octave bands between 63
and 500 Hz and (b) from 1000 and 8000 Hz. HG=GFR= 20 MNs/m*, and PG=GFR=300 kNs/m?*, with Hs=5m and

receivers at Hr=1m every 10m from the source up to 200m.
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Figure 1: Sound spectra at various distances from the source over hard ground. The legend includes dB(A) values at
each distance from the source, (a) 1SO results, (b) PEMARD results. HG=GFR= 20 MNs/m*, and PG=GFR=300
kNs/m*, with Hs=5m and receivers at Hr=1m every 10m from the source up to 200m.

ACCURACY OF WAVE BASED CALCULATION METHODS COMPARED TO I1SO 9613-2, NOISE-CON, ECONOMOWU ET AL, SEPT 2014
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POROUS GROUND SPECTRA - 1SO —~+—10m 60 dBA POROUS GROUND SPECTRA - PEMARD —#—10m 61 dBA
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Figure 1: Sound spectra at various distances from the source over porous ground. The legend includes dB(A) values
at each distance from the source, (a) 1SO results, (b) PEMARD results. HG=GFR= 20 MNs/m*, and PG=GFR=300
kNs/m#, with Hs=5m and receivers at Hr=1m every 10m from the source up to 200m.
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Hard Ground Propagation - deviation from -6dB/dd 0 Porous Ground Propagation - deviation from -6dB/dd
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Figure 1: PEMARD results demonstrate how the -6dB/dd rule does not apply over finite

Impedance ground, (a) over hard ground, (b) over porous ground. Any deviation from zero
indicates that the rule does not apply.
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USING WAVE BASED GEOMETRICAL ACOUSTICS (WBGA) TO INVESTIGATE ROOM RESONANCES, JOHANSSON, ECONOMOU, BNAM, JUNE 2016


https://www.youtube.com/watch?v=ZszwSyU3tyM
https://www.youtube.com/watch?v=ZszwSyU3tyM
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OCTOBER, 1939 J. A, S. A. VOLUME 11

Normal Modes of Vibration in Room Acoustics: Experimental Investigations in
Nonrectangular Enclosures*

Ricuarp H. BoL1**
University of California af Los Angeles, California
(Received August 17, 1939)

o

Figure 1: Mapping on the left is at 1721 Hz (higher by a scale factor of 10, experimental data, courtesy of the
JASA) while the coloured mapping in the 1/3' octave band of 200 Hz. The mapping on the right is at 2302
Hz (higher by a scale factor of 10, experimental data) while the coloured mapping in the 1/3" octave band of
250 Hz. In red high sound levels and in green low [5].
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Real Time Sound Path Propagation in Courtyard using

Acoustics-Lib

the Rosetta Stone of Acoustics Library
by PEMARD



https://www.youtube.com/watch?v=0VYrQ4JzbtU
https://www.youtube.com/watch?v=0VYrQ4JzbtU

v
& PART 2: PEMARD APPROACH -

0 100 200 300 Hz 400
; — Frequency

FIG. 2. Comparison between the sound pressures measured and those cal-
culated, in reference to that of the direct sound. OOO: Tone-burst measure-
ments with the 1/10 scale model (after Sessler and West?). .....: Continuous-
P75 ouvemesisa || WAVE measurements with the 1/10 scale model (after Sessler and West®). —
. S1JITE || === Calculations with the boundary condition of the measurements,
(d, = 76 cm).

Figure 1: On the left, the 3D full scale model used for our calculations. On the right Ando’s
results compared to experimental data. Our calculations are superimposed as a red curve over the
original graph by Ando (courtesy of the Journal of the Acoustical Society of America).
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@ APPLICATIONS OF WBGA
SOUND REFLECTIONS OFF A MIXING CONSOLE
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IMPROVED ROOM ACOUSTICS CALCULATIONS USING COMPLEX IMPEDANCE AND SPHERICAL WAVE REFLECTION & DIFFRACTION
COEFFICIENTS, ECONOMOU ET AL, ICSV23, JULY 2016
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SOUND DIFFRACTIONS OFF A MIXING CONSOLE
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IMPROVED ROOM ACOUSTICS CALCULATIONS USING COMPLEX IMPEDANCE AND SPHERICAL WAVE REFLECTION & DIFFRACTION
COEFFICIENTS, ECONOMOU ET AL, ICSV23, JULY 2016

IOA-LONDON BRANCH APRIL 19TH 2017, WSP | PARSONS BRINCKERHOFF,



APPLICATIONS OF WBGA
SOUND DIFFRACTIONS WITH IN BETWEEN REFLECTIONS OFF A MIXING
CONSOLE
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IMPROVED ROOM ACOUSTICS CALCULATIONS USING COMPLEX IMPEDANCE AND SPHERICAL WAVE REFLECTION & DIFFRACTION
COEFFICIENTS, ECONOMOU ET AL, ICSV23, JULY 2016
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APPLICATIONS OF WBGA
SOUND REFLECTIONS & DIFFRACTIONS (ALL) OFF A MIXING CONSOLE
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.o I All possible sound paths together. Blue curve 1 reflection in
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IMPROVED ROOM ACOUSTICS CALCULATIONS USING COMPLEX IMPEDANCE AND SPHERICAL WAVE REFLECTION & DIFFRACTION
COEFFICIENTS, ECONOMOU ET AL, ICSV23, JULY 2016
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122

PHILIF M. MORSE AND RICHARD H. BOLT
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FiG. 24. Oscill ms illustrating beats in sound decay for different driving fre-
quencies. Top and bottom curves are for driving frequency equal to a resonance
frequency of the room, so only one mode is strongly excited. Middle curve is for an
intermediate driving frequency, with two modes equally excited, showing the beats
between the two natural frequencies as they damp out. Redrawn from reference K3.
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ol- | | STUDIO NO.10 ( NEWS STUDIO)
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Fic. 1. “Reverberation Time” (?) of small broadcast studio.

...... at the frequencies of the lowest resonant modes of the room, there is very little absorption by the walls and hence the reverberation time is high;
whereas at frequencies only a few cycles away from the resonance there is a much shorter reverberation time and, therefore, the walls must be much
more absorptive. Presumably if the room were a different size, the absorption dips (hence, reverberation peaks) exhibited by the walls would occur at
different frequencies corresponding to the new modes of the room. One can hardly believe that the ordinary rigid, bare walls of a room could show
such wide (and variable!) differences in absorption within such a narrow frequency range. What, then, is the trouble with these curves? Surprisingly,
there appear to be at least three methods of measurement which would give this kind of wrong answer!” (Courtesy of JAES, from Theodore Schultz’s
paper “Problems in Measurement of Reverberation Time”, Journal of The Audio Engineering Society, 11(4), 307-317, (1963))
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50 Envelopes of individual modes 100 Hz 1/3 Octave band of 8 Envelopes of individual modes 100 Hz 1/3 Octave band of
45 the room in Fig 8a above the room in Fig 8b above
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Figure 9: Detailed view of the 100 Hz 1/3 Octave Band frequency range (a) from Fig. 8a above
and (b) from Fig. 8b. Spherical reflection factor was used for RT calculations. The dashed curves (--
---) represent the RT curves for the individual resonance peaks while the solid curve shows the
envelope of the superimposed resonance peaks.
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Sound Pressure Level decay - Spherical vs Plane wave
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Figure 5: Sound decay in a small rectangular room. Plane vs spherical wave propagation.
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DIFFRACTIONS + REFLECTIONS VS REFLECTIONS
ONLY
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Figure 7: Sound decay with and without sound edge diffractions.
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THE MUNICIPALITY BUILDING OF LATSIA — CYPRUS, AN
EXAMPLE OF THE INTEGRATED APPROACH IN ACOUSTICS
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DESIGNING THE LIBRARY WALL USING THE TRANSFER
MATRIX METHOD (TMM)
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INVESTIGATING STl USING ISO 3382-3:2012
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INVESTIGATING THE THEATRE USING ISO 3382-1:2009
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L 1250 -2 261 2261 2261 1127 1127 1127 10298 10.298 10298
05 + E 1600 2257 2257 2357 1.131 1.131 1.131 10294 10.254 10.294 v
0.0 | t t | | t t
1 3 5
10 107 10 10* 10
Frequency
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PART 3: AN EXAMPLE OF INTEGRATED ACOUSTICS
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