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INTRODUCTION
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Introduction

* The characteristic of our époque is lack of time. It seems
that today, time must have acq}ﬂired its highest price ever.

j’ /
AL

* It's only natural that acoustical software ought to offer fast

calculations.
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Introduction

Even though efficiency is a function of time, fast
calculations do not preclude high efficiency.

Rather fast and accurate calculations determine high

efficiency.
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Introduction

PRACTICE THEORY

* So far, we were using  The advent of technology
simplified and empirical and computers allows us to
methods to apply implement
engineering solutions. e complicated mathematics

* This does not need to be * in a user friendly
the case anymore. environment

* which allows engineers to
perform their tasks

— accurately and
— efficiently.
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PART 2

BASIC EQUATIONS USED IN PRACTICE
VS
ADVANCED METHODS
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Basic Equations

Basic Equations & Approach in Practice

L, =L, - A
Lp= SPL at receiver

L,=Source power
A=Excess Attenuation

A; = Distance Atten. +
Air Abs. +
Ground Refl. +
Barriers +

Meteo. + @x
Miscellaneous DemOFd
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Basic Equations

Basic Equations & Approach

 The above approach is more or less correct and clearly
distinguishes the various phenomena which take place between
source and receiver

 However, if we have a closer look at the various components of
the equation of A;, and compare them to what theory dictates
we’ll discover discrepancies.

* Due to limited time and since all of us are well acquainted with
Sound Reflection at a receiver, we will examine it a bit in detail.
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Sound Reflection

SOUND REFLECTION AT A RECEIVER

PRACTICE

Standard methodologies use
* Plane wave propagation and
* usually sound energy summation

2 — n2 2
P receiver — P direct + P refl

In addition, based on:

e sound absorption coefficient
or at best

e surface impedance

THEORY

Advanced methodologies use

* Spherical wave propagation
e Surface impedance and

* Sound pressure addition

preceiver = pdirect + prefl

They predict

* Plane wave Reflection

* Ground wave propagation and
* Surface wave propagation

@\pemord

mediterranean acoustics research & development

Slide 9 of 43



Sound Reflection

“there’s
no such thing
as a free
lunch.”

_

 We all know that there is “no free lunch”, therefore,
 What are the consequences of applying approximate equations?

@\pemord
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Sound Reflection

REFLECTION -
SOURCE - RECEIVER CLOSE TO A SURFACE
OF FINITE IMPEDANCE

OLIVE TREE LAB TERRAIN

NNNNNNN
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STATISTICAL REFLECTION COEFFICIENT - Credit, “Engineering Noise Control”, By David A. Bies and Colin H. Hansen receiver

source

p=1-a

h,

a= statistical abs. coeff. air
Not angle dependent G LA AL AL
ground E‘ — Z @ -
”
SIMPLE & MANAGABLE .

source

STATISTICAL REFLECTION COEFFICIENT

* |tis a function of absorption coefficient

* Itis an energy based coefficient (p?)

* It does not provide Interference effects due path differences

* It does not provide Interference effects due the material properties of
the reflecting surface.

@pemord
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PLANE WAVE REFLECTION COEFFICIENT - Credit, “Engineering Noise Control”, By David A. Bies and Colin H. Hansen receiver

source
h,

Z cost - pc
m

¥ Z cosO +pc ai

Zm=surface impedance ground | > 3 _
pc= characteristic impedance o

Angle dependent im;;e

SIMPLE & MANAGABLE S

PLANE WAVE REFLECTION COEFFICIENT

* Function of surface impedance and angle of incidence.
 When pressures are added (not energy), they provide, interference
effects due path differences.

* Interference ignores the additional effect of phase change due to the
properties of the reflecting material
* This can only be handled by the spherical wave reflection coefficient.

@\pemord
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SPHERICAL WAVE REFLECTION COEFFICIENT - Credit, “Engineering Noise Control”, By David A. Bies and Colin H. Hansen

I

source

air

receiver

h,

AT A AALLELLEL L
ground < Z , |
U ¢ ~

”

l g

image

All this for Spherical Wave Refl. Coeff.

Q=R, + (1-R )F(w)
the so called Weyl-Van derPol formula

(1-R,)F(w) = Ground Wave component, named so, from Electromagnetism
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Sound Reflection

REFLECTION -
SOURCE — RECEIVER CLOSE TO A SURFACE
OF FINITE IMPEDANCE (flow resistivity of 200 kPa s m2)

OLIVE TREE LAB % TERRAIN
ANALYSER
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STATISTICAL REFLECTION COEFFICIENT
Using equivalent abs. coeff.

p=1-a

—— Plane wave Reflection - Statistical Abs. Coef. Energy Summation |

Level (dB)

Frequency (H2) A@@ﬂf@f d
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PLANE WAVE REFLECTION COEFFICIENT
Using equivalent abs. coeff.

Z cost - pc
n

P e
Z cost + pc
nm
—— Plane wave Reflection - Statistical Abs. Coef. |
5 T+ — .
\\M /%“‘
1\.““¥ .;3’
|:| X ;‘"
g \ /
— LY _."
@ T \ /
= 1 3 \ /
$51 BETTER: \
\V4
10 L
10’ 10° 10° & 10*
Npemard
emar

mediterranean acoustics research & development




SPHERICAL WAVE REFLECTION COEFFICIENT

Credit, “Engineering Noise Control”, By David A. Bies and Colin H. Hansen

—— Spherical Reflection - Flow Resistivity |
0 i i i i i L | i i 4 i 4 L |

YES
The additional features, over and
above plane wave, are due to
Ground Wave propagation

Level (dB)

A0 L+

10
Frequency (Hz)

@@@ﬁ%@m
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ALL TOGETHER FOR COMPARISON

Export Octave Curves {C5V) Export Octave Curves (Clipboard)
Octave Graph | Octave Table

1/3 Octave Table

Export Third Octave Curves ([C5V) Export Third Octave Curves (Clipboard)
1/3 Octave Graph

8

Level (dB)

Level (dB)

= T R =T I S

10° 10°
Fregquency (Hz)

10°
Frequency (Hz)

Export High Resolution Curves (CSV)

Export High Resalution Curves (Clipboard)

—— Flane wave Reflection - Statistical Abs. Coef. Energy Summation
—— Flane wave Reflection - Statistical Abs. Coef.
— Spherical Reflection - Flow Resistivity

T
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Frequency (Hz)
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@pemord

mediterranean acoustics research & development

Slide 19 of 43




SPHERICAL VS PLANE WAVE REFLECTION COEFFICIENT Harder to Softer

material (flow resistivity from 200 to 10 kPa s m?)

—— Plane wave Reflection - High Statistical Abs. Coef.

Plane wave

—— Plane wave Reflection - Low Statistical Abs. Coef.
T

— Harder material
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Sound Reflection |

REFLECTION — PREDICTING GROUND WAVE
SOURCE — RECEIVER ON THE SURFACE

(of finite impedance, flow resistivity of 10 kPa s m2)
NO PLANE WAVE REFLECTION IS POSSIBLE

&pemord
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SPHERICAL WAVE REFLECTION COEFFICIENT

PREDICTS GROUND WAVE

WHEN PLANE WAVE REFLECTION IS NOT POSSIBLE
(finite impedance, flow resistivity of 10 kPa s m2)

Level (dB)
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SPHERICAL WAVE REFLECTION COEFFICIENT
CORRECTED FOR REFLECTING SURFACE SIZE
USING FRESNEL ZONES CORRECTION

z
YJ‘ 4
OLIVE TREE LAB pgs TERRAIN
o~ ANALYSER
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SPHERICAL WAVE REFLECTION COEFFICIENT
CORRECTED FOR REFLECTING SURFACE SIZE
USING FRESNEL ZONES CORRECTION

— SpherlcaIReflectlnn WITHOUT Fresnel Correction  —— SpherlcalReflec’nnn WITH Fresnel Correction
0
Infinite size

| SN /“\

Finite size

A0 4+

-15 +— ¢ ' —

10 10t
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SPHERICAL VS PLANE WAVE REFLECTION COEFFICIENT
IN TIME DOMAIN

[——_Spherical Reflection - Flow Resistivity Pressure Summation Before |
T

0.04 7
003 |
Spherical wave,
T includes phase shift ]
g oo due to material
LS R M
0.01 \\‘*_\ l‘."‘ |
\\\ I“I‘I
0.02 |
Time{rr o0 _l__. Flane wave Reflecllunfsle:llsllcal Abs. Coef. Pressure SUI:FII'TIEIIDI'I Before |
oos | A Plane wave, !
ooz I \ assumes No
_ phase shift |
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SPHERICAL WAVE CALCULATES ROOM RESONANCES

From Lam’s paper, where he proves that Spherical
Reflection Coefficient matches BEM results.

* estimated reflection orders 80,

e our results with 23 orders (calc. time 19 hrs)

Y. W. LAM: COMPUTER MODELLING OF ROOM ACOUSTICS
Acoust. Sci. & Tech. 26, 2 (2005)

1000

Floor admittance values estimated from 6=150(cgs), depth=50mm

9@

800

700

600

SPL (dB)

500+
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SPHERICAL WAVE CALCULATES ROOM RESONANCES

Above at 25 Hz

. Left at 63 Hz

@\pemord
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Background on OTL-Terrain

Olive Tree Lab — Terrain, based on the work of :

e Salomon’s ray model using analytical solutions

e Hadden & Pierce for spherical wave diffraction coefficients
e Chessel for spherical wave reflection coefficients

e Delany & Basley for finite surface impedance

e Clay on finite size reflectors with Fresnel zones

e Keller on his geometrical theory of diffraction

e Sound path explorer —an in-house model to detect and draw
diffraction and reflection sound paths in a 3D environment

e Harmonoise for atmospheric turbulence

mediterranean acoustics research &

r rcC development
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PART 3

FROM THEORY TO PRACTICE
AN EXAMPLE:

A block of flats is affected by stadium concerts and a chiller.
The background noise level is determined by road traffic
between the flats and the stadium

Qpemord
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EXAMPLE: A block of flats affected by stadium concerts and a chiller

e A stadium across a block of flats and in between a main road.

e There is a chiller on the roof

* Speakers in the stadium (coherent sources) @pemard
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EXAMPLE: A block of flats affected by stadium concerts and a chiller

A stadium across a block of flats and in between
a main road.

—.

Speakers in the stadium
(coherent sources)

pemard
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A chiller on the roof
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EXAMPLE — NOISE CRITERIA

| Indicative Results Precise Results  Precise Results Table | 1SO 9613-2 Results | 1SO 9613-2 Results Table |

|t DAGAOUTV2-

A receiver on building facade
S P e
The BNL at the facade due to road
traffic is calculated to be 58 dB(A)
having the spectrum shown

L-A, dB(A) =~
L-lin, dB =~

, oemard
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EXAMPLE — COHERENT & INCOHERENT SOURCE ADDITION

Relative Levels outside stadium
during a concert.

Levels when speakers are calculated
as coherent and incoherent sources.

Note: speakers are omnidirectional.

[=—— Outside House - Incoherent =—— Outside House - Coherent |

D A ] | ]

Level (dB)

.II‘1I{]1 | .IIIII‘II{]E | | III”‘1I{]3 | | ”'”1'{]4
\ pemOrd Frequency (Hz)
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EXAMPLE — PATHS & RESULTS WITH/OUT BARRIER AT FACADE

Stadium roof

barrier

s Level (dBA): | Ready | Editing Plane: Origin 0, 0, 0 | Normal 0,0, 1| L= 1 | Perspective: OFF | Select By Pick | 61.450, -129.150, 0.000

Absolute Levels at facade due to a concertin a
stadium. A Noise Barrier (in Green) is placed on

* ~Bar (LED) meter shows whether noise
criteria are met.

One does not need to remove barrier to
calculate levels before the insertion of a

@pemord
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EXAMPLE — AT RECEIVER, A GRAPH THAT SHOWS ALL NECESSARY INFO

A TOOL TO SOLVE A PROBLEM:

ONE GRAPH SHOWS ALL NECESSARY INFO AT
A RECEIVER

e Absolute Level Before Barrier Insertion
(brown curve)

* Level after insertion of Barrier (blue)
* Noise criteria, Grey Area
* Barrier Insertion Loss (green)

* Excess Level to meet criteria (red, the
result of blue minus grey area levels)

* Levelsin dB(A) & linear dB
* Averagell

PROBLEM IS SOLVED WHEN BLUE CURVE IS
INSIDE GREYED AREA & EXCESS LEVEL IS
ZERO

1/1 octave frequency bands, Hz

@pemord
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EXAMPLE — CHILLER, PATHS, RESULTS, CALCULATION OPTIONS

Indicative Results | Precise Results | Precise Resutts Table I 150 9613-2 Results I 150 9613-2 Resuli

=~"[evel Before

a - DAGAQUT v2 *__ Level After *  Excess Noiselevels

11 octave frequency bands, Hz
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EXAMPLE — CHILLER BARRIER RESULTS TABLES & GRAPHS, REL. LEVELS

Export Octave Curves [C5V) BExport Octave Curves (Clipboard)

Octave Graph | Octave Table

Export Third Octave Curves {CSV) Bxport Third Octawve Curves (Clipboard)

1/3 Octave Graph | 1/3 Octave Table
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__m
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Export High Resolution Curves (CSV)

Export High Resolution Curves (Clipboard)
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EXAMPLE — BARRIER IL MAPPING, BROADBAND

Mapping of Barrier IL. The effect of the stadium and barrier increase levels on the road

@\pemor‘d
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EXAMPLE — BARRIER IL MAPPING, 100Hz

Mapping of Barrier IL. The effect of the stadium and barrier increase levels on the road

= TERRAIN

AMNALYSER

%, OLIVE TREE LAB

@\pemor‘d
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EXAMPLE — BARRIER IL MAPPING, 10kHz

Mapping of Barrier IL. The effect of the stadium and barrier increase levels on the road

*a, OLIVE TREE LAB jagd TERRAIN

g AnaLvseER
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PART 4

CONCLUSIONS
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Conclusions

CONCLUSIONS

* Nowadays technology allows the replacement of
simplified calculation methods with advanced

calculation methods.

* Advanced calculation methods offer engineers and

scientists
* Accuracy
e Simplicity

* More efficiency

@\pemord
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QUESTIONS

Thank you for your attention.

| would welcome questions or comments.
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